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PREFACE

A surprising variety of seemingly unvrelated problems can e
described by the analog of flow in a network. Analysts were praszuted
with both a very general aigorithm and a very efficient code fur finding
solutions to a variety of network flow problems, with the distribution
of R. Clasen’'s comput2r code for this algorithm (SHARE, RS OK¥L). and
the publication by D. R. Fulkerson, "An Out-of-Kilter Method for Minimal

Cost Flow Problems,"” J. Soc. Indust. Appi. Math., Vei. 9, 1%6L, pp.

18-27. 1In discuSsing the use of two separate models with various Air
force organizations, one author has pointed out the cemputational advan-
tages of network flow models over more general! mathematical programming
models, and has become aware that many operations analysts want te better

und -stand the Qut-of-Kilter algorithm; see E. P. Durbin, An Interdiction

Model of Highway Transportation, The RAND Corporation, RM-4945-PR, May
1966; and E. P Durbin and Olivia Wright, A Mcdel for Estimating Military

Personnel Rotation Base Requirements, The RAJD Corperation, RM-53398-FR,

Occober 1967. This present Memorandum describes the operation aund capa-
bility of the Out-cf-Kilter algorithm under the assumption that the
reader is conversant with basic ‘'inear programming. It should be useful
to analysts and planners interested in a verssatile modeling concept and
computational tool.

D. M. Kreoenke is a cadet at the United States Air Force Academy,
and coauthored this Memorandum while on temporary assignment to The RAND

Corporation.
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SUMMARY

The analog of steady state flow in a netwerk of nodes and arcs
may descrive & variety of processes, Familiar examples are transpor-
tation swstems und personnel assigmment actions. Arcs generally have
cost and capacitv parameters, and a recurring problem is that of
determining & minimum cost route between two points in a capacitated
network. If a process can be modeled as a network, and the criterion
for evalueting performance of the process can be related to the variables
corresponding to Ilows in the network, then determining a minimum cost
flow is =guivalent to determining an optimal set of variables for the
process,

Efficient and general methods of solving the minimum cost flow
problem are therefore useful and important, Fu. .rson's Out-cf-Kilter
Algorithm is anr extremely efficient and general method for solving
such problems., The glgorithm cpevates by defining conditions which
must be satisfied by an optimal "circulation'" in a network -- roughly,

a flow which satisfies capacity restrictions on all arcs and also

satisfies stated conservation of flow conditions at ail nodes, When
such an optimal circulation is deternined, all arcs are "in-kilter."
r At sowe point in (he operation of the algorithm, if such a circulation
does not vei exist, some arcs are ‘‘out-of-kilter"” -- hence the name of
the algeritim., The algorithm arbitrarily selects an out-of-kilter arc,
and tries to rearrange flows to bring that arc into kilter while not
forcing any other arc farther out-of-kilter., If the out-of-kilter arc
arvc and repeats The process., Since there are only a finite number of
arcs, repetition of this procedure eventually results in an optimal
golution, I{ any arc cannot be brought into kilter, the problem cannot
be solved.

The OQut-of-Kilter algorithm also solves the special network problems
of finding maximum flow between two nodes in a costless, capacitated

network, and finding the shortest route between two points in « network.
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I, NETWORKS

Steady state flows in networks may represent many physical and
nonphysical systems. The complex of freeways shown in Fig. 1, linking
New York, Chicago, St. iouis, Denver, Los Angeles, Houston, Seattle,
and Washington, D. C.,is a network, The vehicles moving over that
network may be considered homogeneous units of flow. Altermatively,
this network might describe a petroleum distribution system. Flows in
networks can also represent communications between people in an organi-
zation, inventory and production smoothing processes over time and as-

signment of personnel to jobs.

WASHING TON,

#‘« o

Fig. 1 -- A Network Linking Cities

HOUSTON




The common elements of these situations, and hence the abstract

"nodes ,"

definition of a network, are a collection of points called
(the cities in Fig. 1) and a colle~tion of "arcs' wh.ch connect these
nodes (the highways or pipelines in Fig, l). We denote the nodes by
single lower case letters; for example, node i, and identify the arcs
by naming the nodes they connect, arc (i, j). Some hcmogeneous com-
modity (vehicles, petroleum) can flow over the arcs, and we denote by
xij the amount of commodity flowing on arc (1, j}) from node i to node
y. 1f xij < 0 then the commodity flows from j to i.

In most network problems, arcs have cost and capacity character-
istics. Generally, some cost is incurred to move a unit from node i

to node j, and we denote these unit movement costs by c This may

iy’
be dollars per unit pumped in the petroleum distribution neiwork., We

also frequently find that flow is limited by upper bounds or capac-
ities on the arcs. For example, only ¢ limited number of vehicles per
hour can move through the Lincoln Tunnel, and 4 limited number of
barrels per day can move through the pip~'ine from Houston to St. Louis.

We denote these maximum arc capacities u There may also be a re-

i3’
quirement for 8 minimum amount of flow al>ng any arc. We denote this

by £ Imposing this condition allows us to construct networks with

13’
controlied flows that describe particular problems, or that mayv describe
actual minimum demand levels at points in a commodity flow network.

To summarize, a network is characterized by nodes, {, arcs between

the nodes (1, J);, flow across the arcs, x unit costs of flow across

13!
the arcs, Cij; upper bounds on filow across the arcs “i ;o and lower
bounds ¢n flow across the arcs, ¢, . Thege characteristics can com-

1]

pleteiv characterize steady state flow in a network,

In a problem with no costs, we allow cy T C. In a problem with
~0 lower bounds but flow only {n one directicn, we allow tij =- G, If
there are no upper bounds, we allow u, = + ®, We further sssume that

1)

all costs, flows, and bourds are integers. This is not an overlv stronyg
assumption since {f all numbers are rationai, clearing fractions will
vield integers. For computational purposes restriction to raticnals

suftices., The assumption of integral-valued parameters is used to

demenstrate convergence ot the Qut-of-Kilter algorithm,
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A general network problem is finding a minimum cost circulation
in a network with arc capacities, In Sec, II we explain Fulkerson's

t

"Out-of-Kilte~'" algorithm developed te solve this problem. The pruhlem

requires tihat we tind flews, x_ _, that minimize total cost
1]

(1) Ec X tor all i and j.

PP
ij i) 1)

while at the same time satisfy the constrairing conditions

(2) i, <x,, < u,, for all i and j,
1) 1] 1]
and show that in a circulation, what goes into a node must come cut of

the ncde. This is representud by

(3) Zx,‘ -Zx,, =0 for ail 1.

mdliL B dib

J ]

While there ar. several ways of solving this problem, and ir mav

be conceptuallv viewed as a litear programming problem, the Qut-of-Kilter
algorithm is both the most general of the specialized alvorithms and is
tar more efficient here than a standard linear prograamicg alworithn
wotild be. We discoss some capabilictizs ot the Qut-of-Kilter alpgorichs
in Sec. 11T, and note here only two redseons for emphasizing its wtilitv:
(1 all preblems solvable by the more specialized netwirk alworithms
(maximum flow through a4 capacitated network, sheortest route ftarouygh o
network, etc,) ave solvabie by the Out~otf-Kilter alvorithem, and in
understanding ot it allows construction o1 the more ofrlclient specialized

alporithms,; (2} many problems are simply too large to be hacdled cooe-

M-

putaticnally by linear proxramming alueorithms on current compolers.
Problem tormulation as g networ!t permits elfticiert computatioral analvsis

by the Qut-of-Kilter alporithm,

R

S il

- i
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17, THE OUT-OF-KILTER ALGORITHM

INTRODUCTION

A set of flows, x_j,
i

conservation of flow equations (3) ie called feasible. In artempting

that satisfies fleow constraints (2) and

to find a minimal coet feasible circulation, the Qut-ot-Xilter algorithm

(0KA) operates with both arc costs, ¢ and '"'r de prices," T , which

i‘; "19

arise from duali.y considerations. WeJassume the reader has no knowledge
of duality theocy, and attempt to make the existence of the node prices
plausible and their nature clear by means of an eccnemic explahation.*

We have previously described the minimal cost circulation prcblem from
the point of view of a producer or distributor, Consider the petroleum
distribution network of Fig. 1. Assume some regulatory agency, say the
"Federal Petroleum Distribution Commission," has set this distributor

a variety of minimum and maximum flow levels on various route sogments.
The minimum flow levels may reflect consumer d-mands at points in

the network, whereas the maximun flow levels may reflect physical rouce
capacities. The digtributor knows the unit transit charges on each

route segment and must decide the route structure -- avcs and the amounts
moving on each arc -- to meet the induced flow requi cments or all arcs
at minimum transportation cos.

The minimum flow levels on various route segments have presumably
been established at the insistence of . onsumers. Therefore let Si
denote the price a consumer at node ! must pay for & unit of petroleum.
The “i will be related to the amount demanded at some nodes, since as
the amount demanded increases, the overall difficulty in supplying it
will increase.

The Commission recognizes that the nrice of petroleum to the con-
sumer in ea~h city of the network should be related to the distributor's

overall cost in establishing the entire route structure, and not re-

lated to just the transportation costs connecting the source and node 1,

*For a further discussion of duality see L., R. Ford and D. R,
Fulkerson, Fluws in Networks, Princeton University Press, Princeton,
New Jersey, 1962, pp. 26-30 and pp. 113-113. Also see W. J. Baumol,
Econonic Theery and Operations Analysis, Prentice-Hall, New York, 1965,
Chap. O,
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Neirher the dis.ributor nor the Commissicn are initially sure what

'i these node prices, ought to be, but the Commission -- hopefully

T
concerrned with consumer welfare as well as producer profit -- intends

to see that consumer costs are no greater than necessary to induce the
;ﬁ distributor to establish the route.
;E The CKA may be pictured ss 2 sequence of svstematic decisions the
: distributor makes with the Distribution Commission watching carefully.
At each step the distributor asks, " hich route shall be used to mini-

mize total system costs, taking a&ccount not only of transportation costs,

but also of the commeodity prices at the various cities?’ 1I{f there is
rno profitable route at some g#tep, the distributor tells the Commission,

"You must now allew increased prices at some cities in order to make it

financially pcssible for me to continue constructing a route.' The

Commission answers, "Okay, but let's find that route which reguires the
zinimum price incr.ase.”

Based on this fanciful eschange, we associate with each nude. i,

a8 variable, 7, , that can be considered the price of a unit of the flow

commodity at the ncde. The Distribution Commission defines & net arc

cost, ¢

; 28

13

{4) c = ¢ + 17 -,

The new cost, represents the total cost to the svstem -~

Eij,
consumer and distributor -- of transporting one unit of flow from node
i to node j. This definition compares the cost of retaining a unit at f“}

node i1 with the cost of moving it to node j. In moving a unit of flow

from 1 to j, the commodity price at i, 7 is foregone, and an actual

.'i’

transportation cost, ¢ is incurred., 1f the sum of these costs is

)’

greater than the commodifry price at j, m_, then it does not pay to ship

i

a unit from { to }. The c,, will be positive. On the other hand, if

i}

a unit at j coets more than at 1 plus the transportation cost, Eij will
be negative -- the system benefits from the move -- and shipment from
i to j is profitable. If the value at j, 7 , is balanced exactly by
the valve at 1 plus the transportation costj (Wi +

Cij)’ then cU = 0,

and we are indi€ferent to an additional unit flowing from i to j.




Limitatlons on permissible flow levels (2) together with possible
levels of total system cost (4) yield the following conditions thsat
will be satisfied by an optimal solution teo the minimal cost circulation
problem (1) - (2).

. f L' h - R
(5) 1 (o 0 then X, Ul .
&) = O u‘ < < -
( } If CI , theﬂ X UI
i > 1 - }.
(7) If c, . 0 then X F

Equation (5) states that when net arc cost !s negative {when it is
prcfitable toc send the commodity from { to j), flow on the arec cught to
be &8 large as possible. Equaticon (6) states that when net arc cost is
gero, we avre indifferent to flow level so long as it meets constre&ints.
Equation (7) states that when net arc cost is positive (a8 loss is in-
curred .y sending the commodity from { to }), flow on the arc ought to
be at the minimum level pesgible. The OKA is designed to construct a
flow meeting these conditions.

Any arc that meets the optimality conditions (5), (6), {(7) is
defined as "in-kilter." Arcs that do not satisfy these conditions are
"out-of-kilter."”

Out-of-kilter arcs can be grouped into two categories:

{a) Those that are feasible but not optimal, They have flow which
satisfies (2), but prices and flow do not satisfy (5), (6), (7).

{b) Those that are infeasible. Flow is below or above the upper
bound, Therefore (2) is not satisfied.

Arcs that are feasible but not optimal must fit one of the fellow-

*
ing states or conditions.

It 18 not necessary to consider as a special case c;, < 0 and
Xjy < Lyyor ey > 0and x> uii. These cases, though infeasible,
aré included in conditions 1 and II, 1If the algorithm terminates with
all arce in kilter, any originally infeasible arc in state I or 11 will
not only be feasible but optimal.
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i ; e, . < 4 x,, <u .
Conditien I; 1] 0 an xxj uij
i : c > [ > s
Condition II: Cij 0 arnd xij iij

Infeasible arcs fit one o these conditions:

Condition III: éij >0 and x| < zij.
Condition IV: Eij = 0 and X < zij.
Corndition V: éij = 0 and xij > uij'
Condition VI: Eij < 0 and xij > Uij'

A "kilter-number," as defined below, 1g associated with each arc,

Arc
Condition Kilter Number
- -
I. c“,x1J uij]
- r )
II.....c0.04. cijoij - ‘1j
& ]
111, IV..... {1ij x4

vV, VI....... [xij - uij]

Notice that {n all cases, the kilte:  number is positive. For the
feasible states, I and II, the kilier number is a measure of non-
optimality. The kilter number for states III - VI indicates the degree
to which an arc is infeasible. 1In-kilter arcs meet conditions (5),
(6), or (7), end therefore have a kilter number of zero.

The OKA operates by arbitrarily selecting an out-of-kilter arc and
rearranging flows in an attempt to r.duce the kilter number of that arc
to zero. During this process the kilter numbers of other arcs do not
increase, and may in fact decresse. The a2lgorithm terminates with an
optimal solu“ion when kilter numbers of all arcs are zero. Optimality

of such a solution is verified by recalling the definition of ¢, , and

1)
noting that a kilter number of zero implies Egs. (5), (6), and {7) hold.
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It is slightly more complicated to show that the algorithm termi-
nates. The algorithm selects one out-of-kilter arc at a time and
attempts to bring that arc into kilter by rearranging flows without
forcing another arc out of kilter. If this process can be complezed,
the algorithm seeks another out-of-kilter arc, If it camnot be com-
pleted, the problem 1s infeasible. 1If it takes only a finite number
of steps to put an arc into kilter or to determine infeasibility, and
there are only 2 finite number of arcs in the network, the algorithm
must terminate. We will later indicate that these conditions are

satisfied.

CPERATION OF THE ALGORITHM

Once the minumal cost circulation problem (2) has been formulated,
the OKA can be started with any set of node prices, ﬁi’ and any circu-
lation which satisfies the conservation of flow equations (3). This
circulation and set of node prices can initislly be zero. Arbitrarily
select an out-of-kilter arc joining two nodes, say s and t, The fact
that the arc (s, t) is out of kilter indicates thsi it is either profit-
able or necessary (or possibly both) to ship an additional unit from
t to s or from s to t. 1In either event, flow change is always desired
for an out-cf-kilter arc. In order to change flow on the arc and yet keep
flow in the network balanced (J3), another path through the network from

t to s must be found along which flow values, x » can be changed., 1In

congtructing this path, tw. pieces of iniormatiin (a "labet") must be
retained at every node. The first component of the label at a given
node | indicates the previous node in the path, and whetuwr presert flow
moves from 1 to j, denoted (i+), or from j to i, (i-). The second com-
ponent of the label 1s the amount b, which flow on arc (i, J) is to be

changed, €¢{J). A complete label at node j is
The search proceeds from node t through the network seeking a path back

o 8., ''Labels' are assigned to various nodes 8o that when a path is

found connecting t and s, the labels indicate the direction and magni-




~ude of necessery flow change along the path. Of ccurse not every

yde will receive # label in tiils process. Circulation from Houston to
$t. Louis can be completed by arcs from St. Louis tc Washington and
Washington to Heuston. Ses<tle and Los Angeles, for example, would not
receive labels. '

1f a path conneciing ¢ and 8 is not found, the algorithm determines
new node prices, ﬂi, in Buc.. a2 manner that (a) another node will be
labeled in the partial (t, &) path, (b) one less arc will be con-
sidered for iaclusion in the (t, s) path, or (¢) if no arcs remain and
the paeth is incomplete, the problem is deemed infeasible.

We nex: explein some of the labeling rules that are used in at-
tempting to find & path in the network from t to s.* I1f a path is
found we term this "breakthrough.'" Assume that an arbitrary arc (s, t)
18 in state I, with Est < 0 and Xt < e Since Est < 0 it is profit-
able to increase the flow, Xg ¢ We begin at t by assigning node t the
iabel [s+, ¢(t) 7 where

(8) g(t) = Uie T Xgpe
This indicates that flow on this arc should be increased by €(t) in

order to be equal to 'he upper bound, and hence be optimal. See Fig. 2.

¢ <0, t

8+, €(t)]

Fig. 2 -- Initial Flow on Out-of-Kilter Arc (s, t)

*We describe cases 1 and IV. The rules are onlv slightly different
in the other cases, and the method remains basically the same. The im-
portant special network flow problem which case IV covers is the 'capaci-
tated transportation problem.” Sectfon 1II describes operation of the
algorithm in this problem.
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The algorithm next seeks an unlabeled node adjacent to t, say j.

Asaume cunditions on the arc (i, jJ) are either

¢ < ¢
(9a) ctj > 0 and xtj t ]
or
(9b) ctj < 0 and xtj < Utj'

In either case we desire to increase flow enough from t to j to correct
infeasibility or noncptimality on the arc. We therefore assign node j

the label [t+, €(j)]. 1If condition (9a) holds, we have

(17) e(§) =minle(t), £, - x T,

while for condition (9b) we have

(10b) e(1) = minle(t), Ny xtJW.

The €{]) state the maximum amount by waich we can raise flow on the

)

arc (t, j). See Fig. 3. We would like to increase X, by (ltj - xtj

in cas¢ 9a. And we would like to increase x__ by (Utj - ) in case

] e}
9b. PRut at the same tiwme the previous label at t states that we want
te incrcase flow on (s, t) at most by the amount €(t). Thus we compare
tye) with the new value computed by (10a) or (1Ub) and select €(j) as
the minimuc of the two values -- the maximum amcunt by which we can in-
crease flow along both arcs without violating the feasible bounds or

optimality conditions on any arc., This guarantees that flow changes

will not increase the kilter number ot any arc.

t Ts+, e(t)]

.// N e
J

8

Fig, 3 -- Carrying Forward a Label
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Assume that we next encounter am arc connecting nodes s and j. We
have then completed a path from € to t to j and on returning to s ~long
the path we wish to increase flow, Thus far the flows encountered have
been in the appropriate direction--8 to t and t te j. Suppose, however,
that flow on the arc (s, j) is moving from s to j, and that arc (s, j)

is in one of the following conditions:

(lla) csj 2 0 and st > tsj

(11lb) csj < 0 and xsj > usj-

We then assign the label [ j-, ¢(s)] where

(12a) e(s) = min(e(]), Xgy " 1817 tf (1la) holds
or
(12b) e(s) = minfe(}), L usj} if (11b) holds.

In either case we want to increase flow oa the directed path s,
(s, t); t, (t, 3); §, (J, ) by the amount €(8). We therefore decrease

flow, x_., by the amount e(s), This is equivalent to increasing fiow

8
in the dgsired direction (see Fig. 4) by e(s).* Recall that €(s) is
the waximus. amount by which flow or all arcs can be increased without
increasing any kilter number.

We have now broken through -- found a path from t to s through the

network, and have determined n{s), the maximum amount by whiich flow

*Consider the petr. . eum distribution network of Fig. 1. Assume
present flow is 6 units from Houston to Denver and 4 units from Houston
to Washington, D.C. 11 we desire to¢ Increase flow from Denver to
Houston by 2 units, it {s rot reascnable to send 6 units from Houston
to Denver and at the same time te send ! unite of the same commedity
from Denver to Housten. It woull be more profitable to reduce the
tlow from Houston to Denver to » units. This "increases" the flow
trom Denver to Hoaston by reducing the amount Houston must ship to
Denver, and is an example of increasing forward flow by decreasing
reverse flow,
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t
(84, e(t)]

[3-, e(s)” .///,////// ' [t+, (1))

s J

Fig. 4 -- Labeling an Arc with Reverse Flow

along this path can be increased without violating optimality or feasi-

bility conditiors. The algorithm now changes flow according to the
label at each node. At t we increase flow from s to t by e(s), At

j we increase flow from t to j by e(s). And at s we decrease flow

from s to j by €(s)., Flow from s tov t has now increased by ¢_.). The

amount of flow augmentation, e(s), was chosen bv considering for each

arc the amount by which flow could change without violating feasibility

or optimality conditions. Therefore, on at least one arc, the one
yielding the minimum of the €(1), flow has actually beeun sct equal to
an upper or lower bound. Reviewing the definition of the kilter

numbers for conditions I - VI, and tke flow augmenting rules, note

that flow augmentation makes flow on at least one arc closer to a bound,

*
and therefore at least one kilter number has decreased.

We summarize operation of the algorithm to this point., After

starting with any circulation and node prices, we arhitrarilv select

an out-of-kilter arc (., t) and label it t. We next examine all nodes

ad jacent to t, determine if flow on arcs to these nodes could be ap-
propriately moditied to help bring (s, t) into kilter, and label the
nodes using rules 9 through 12. For each node so laheled we attempt

to repeat this labeling process until a path returning to s is tound.

Flow along that path is then augmentes by the maximunm feasible amount,

€{s), which is the minimum of feasible amounts along all arcs on the path,

*
The kilter number will not necessarily become zero on any new dre.

it the minimum e€({) occurs on an acc originally satisfving g, (o1,
with eriginal kilter number zero, the kilter aumber of that arc will
remain zero, ard kilter numbers on other arvcs will decrease, but not
necessarily to zero, Notice also that since flow changes bv an 1n-
tepral value and since all costs and prices are integers, kiltev
numbers decrease by integral amounts.

o

LA e e —
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All labels are now erased, and arc (s, t) is examined again, 1If
that arc i1s in kilter, we seek another out-of-kilter arc. If (s, t)
remains out of kilter, the search and label process is repeated., The
same path from t to s will not be chosen again because on at least one
arc of that path, flow is at an upper or lower bound. 1If all arcs are
in kilter, the optimality and feesibility conditions (9), (6), and (7)
are satisfied, and the algorithm has terminated with an optimal sclutioun
to (1), (2), and (3).

Labeling rules for out-of-kilter arcs (i, j) in states other than
I or IV are similar. When flow on arc ({, j) should be decreased (states
11, Vv, VI), the labeling process starts at i, attempting to move along
a parh through the network to j, An out-of-kilter arc in state II1 is

, the imount

treated as one .. state I or IV, except that €(j) = iij - xij

of flow augmentation needed to remove the infeasibility,

NON-BREAKTHRCUCH

Given an out-of-kilter arc (s, t) on which we want to increase flow,
our eability to find a path through the retwork from t to s has depended
en the availability of arcs (i, j) in one of twe conditions, On an arc
(i, §) either we both desire to increase flow xij and are able to, or
we both want to decrease {'ow xji and are able to. If, in attempting
to find a path for a vwiven out-ot-kilter arc (s, t), we have labeled all
nodes we can bv rules (9a), (9b), (lla), (ilb), and have not returned
to node 5, we have @ "non-breakthrough. '

There are twe possible difficulties, FEither (1) the net arc costs
Eii provide insufticient incentive for a distributor to move the com-
nwdity through the network, or (2) no augmentation {s possible because
flows xH are equal to upper bounds and flows x*i are equal to lower

]

bounds. If case 1 occurs, we will svstematically change prices ﬁi in

a wav to be described, recompute € and again trv to treak throeuygh,

i

I{ case 2 cccurs we must declare the problem inteasible. Tris iv-

feasibility can he geen since we redgched this point by attempling o
bring aun cut-ot-kilter avc (s, ) into kKilter. The fact that the arc
(s, t7 as a positive kilter number indivates that either optimality

conditions or feasibil!ity conditions are net satistied on it. 1f the
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problem is feasible, and only the optimality conditions fail to be
satisfied, the repricing of the ﬂi will eventually bring Est to zero,
and hence bring the original arc into kilter, The problem is in-

feasible, however, if flow L is outside the bounds (is ust)’ and rno

¢’
path through the network exists to change that flow and bring X e
within bounds.

To lcok more carefully at this non-breakthrough situation, con-
sider the various arcs that can be used for & breakthrough from t
back to 8. Arcs connecting labeled nodes to labeled nodes are
already {n the path from t to our present positic». They cannot be of
further use, Arcs which connect unlabeled nodes to unlabeled nodes are
of no use, since we hrve no means of extending our path to these arcs,
Therefore, we need only consider arcs that cornect labeled to unlabeled
nodes.*

This iteration started with an out-of-kilter arc (s, t) in condi-
tion I or IV, and we have beer attempting to move flow forward from t
through the network to s, and have stopped at a labeled node, 1. 1If
arc (1, §) is to be potentially useful, its flow must be less than

capacity (x 1f x>0, or 1t flow is moving in the directicn

< y )
1} i] i)
opposite to our path, that flow must be greater than the lower bound

(xji > lji\. In the former case we can iuncrease forward tlow, ard 1o

the latter case we can decrease reverse fleow., In either case 4 usetul

arc 1s one that incredses net forward tlow., For forward flow arcs

(i, j) with X < u E ard for reverse flow arcs with x_l U, con-
) L i i

ditions (9a)y, (9b), (llay, (l1lbY caroot be satistied, Otherwise, by
rules 10 and 12 the noies j would have received labels, In other words,

the current cost sirecture {E incorrect.

Arcs with forward flow below capacity (xij < uiji have positive
ret &rc cost (< ; Sy, Othervise, by rule (9b), both nodes would be
' )
tabeled. Su-h arce must also have x  ° lijg ar by (945 both nodes
t i

weeuld be labeled. Arcs with reverse flow above the lower boomd

Lo

K

*
If there are no such arcs and the ev round ono (s, tY is post-
tive, the problem {s itnfeasible. For s flows in

s

‘ther network nodes, bhut ne netwerx rnode ever flows back to 5.

.
2
i
r
re
—
-
]
"t
-~
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f ) must have negative net arc cost (c,, < 0) because of

(in BT il
}

]
rule (lla and must have x < becauvse of ruie (1llb). Thus, the

u
! bR it
arc conditions that must exist on arcs connecting labeled nodes, 1,

to unlabeled nodes, j, in case of a non-breakthrough are
(13) ¢,, >0 and ¢  $x,  Su
(14)

Equations (13) and (14) represent arcs that may vet be useful in
breaking through to th starcin, ocut-of-kilter arc (s, t). The arcs
are useful since it is possible that flow can stil! be modiiied on them.

Recall that Eq. 4 defines c. .

i)

The potentially useful forward arcs have not been used since ¢ . >
1]
This statec that the value given up at node {. ﬁi‘ plus the cost of

moving an additicnal unit of tlow to i, iv  reater than ~ , the
) )

Cij'

value ot having the unit at {. It c¢res not pav the distributor to send

Tt. tor a reverse arc satistfyin, (l4) it does net pav to reduce back flow,
At this point, however, path construction has halred, and there

will be n path through the aetwork from t to s unless it beco . possi-

ble to use a previously unused arc satistfving (13) or (1w, and to

labei at least vone previously unlabeled node.  He will accomplish this

by raising the price ot the commodity, = | at all unlabelied nodes,
-~ j

This wiil make it more protitable to ship roward the vnlabeled nede oo

VALY

terward arcs (increase xiji or to reduce flow away trom the unlabeled

node on reverse arcs {reduce xﬂi)' This repriciryg action corresponds

tea grudging approval dyv the hvpothetical Federal Petroleus Distribution

VoprLoes fhat oonsgmer s o wiin hidae
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We can get flow moving again on at

.east one appropriete forward
arc by finding the minimum c.j on all the forward arcs, sav b,, and
1 i i
adding this to ~, at all unlabeled nodes, This would result in a new
system cost on each {orward erc:
+ (—. +b.)
c.. = <., -, - (", .
ij ij i j 1
And on the arc that yiellded the minimum,
(‘.’ =‘(C,4 -, "‘".) ‘-.. = U,
i) 1] 1 ] 13
By labeling rule (9b) this last arc can be used, since At system cost

zero we are indifferent

labeled.

to changes in flow., Therefore, ncde j can
This action has essentially cost the consumer and the system

b, per unit of flow arrivine at j, which we have had to add to tie price,

[

m., at the unlabeled nodes.

3

It might have proven cheaper to reduce back flow on one of the arcs

(i, 1), This could have beer. accomplished by finding b,, the magnitude

of the smallest negative

~—

would have resulted in a

“j' at unlabeled nodes,

2

), and auding b, to all nude prices,

2
relevant arc with reverse flow thiz

cost (min}&,.!
}i
Un each

new system cost given by

-

15) ¢, =cC -7y .
(15 i cji + qj { i b2)
On the arc yielding b2, the minimum magnitude,

6 ¢’ = 4+T -m - ¢ = 0,
o) [T T R ST

By labeling rule (1lla), this last arc can be used to augment {low and

node j can be labeled,
consumer and the sysiem b, per unit.

use the second procecdure.

b

<

1

amount

b.

The pricing procedure has essentially cost the

It b, is less than b

2 1
In general, then, the algorithm finds b

2 we should

1 and

., from the ares defined by (13) and (l4), selects b (the smaller of

b, and bz), and increases node prices at all unlabeled nodes bv an




Repricing actions have allowed the distributor te sdd another arc
to the (t, s) path at some cost to the purchasers but &t the minimen
cuost to those purchasers. Follewing the repricing procedurs, the
algorith:  cks the original ocut-of-kiiter arc (s, ty. [f it if still
out of kilter, the searcn for & path back to rode t is repeaied. We
sumisavrize the algorithm to this point, Arbitrarily select an cut-cf-
kilter arc (5, t}, and by means of the labeling procedure attempt to
find 2 path through the network from t to &. If such a path is fournd,
appropriately modify the flow along each arc of the path by the amount
determined in the labeling process. 1If a path to s is not limmediately
found, consider all arce that are potentially useful in extending the
nath from t, Modify the node prices on these a3rcs so that one of these
is used tc erxtend the path and continue the labeling procedure. If there
are no arcs connecting labeled to urnlabeled ncdes that satisfy the con-
ditions (13) or (l4), then no path is possible arnd the problem is in-
feasibie, Once this particular arc is brought intc kilter, the algerithm
continuves until all arcs are in kilter (which signifies an optimal so-

lution to the original problem) or until it is impossible to comstruct

a feasible circulation.

TERMINATION AND OPTIMALITY

The OKA concentrates on one out-of-kilter arc at a time. Each time
a breakthrough to the out-of-kilter arc cccurs, the labeling rules in-
sure improvement in kilter numbers on every arc in .he path, including
the out-of-kilter arc, We have mentioned the assumpticn that all values
are integral. Kilter numbers therefore improve by integral amounts at
each breskthrough. Thvs, only a finite number of breakthroughs are pos-
sible before the arc is in kilter. There are only a finite number of
arcs. If the algorithm is successful in bringing every arc intc kilter,
the solution is optimal by (5), (6), and (7).

The remaining situations are the non-breakthroughs. When a non-
breakthrough occurs and potentially useful arcs exist, price changes are
made and at least one of the potentially useful arcs is uvsed to extend

the path. Since there are only a finite number of arcs, we must
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eventually either break through or discover there are no potentially
useful avecs left. 1n the forme: case, we decrease the kilter number
of the original out-of-kilter arc; in the latter, we declare the

problem infeasible,
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III, USES AND SPECIAL CASES

While networks can be used to model a variety of actual problems,
ingenuity is often called for in formulating the network to describe
the problem. If the netwerk can be properly formulated, however, it is
far mcre efficient to soive a minimal cost circulation problem than the
~juivalent linear programming problem. Furthermore, we frequently need
to examine the behavior of d solution as the parameters vary, As
Fulkerson points out,* the Out-of-Kilter algnrithm is designed to start
with any circulation and any set of node prices. Therefore, a previously
derived optimal solution can be used to begin a new problem with re-
sultant savings in computation time.

We have described the OKA for cases I ard IV. The important special
network flow problem case IV covers is the 'capacitated transportation
problem," or the shipment of a fixed level of flow, v {possibly maximum
feagsible flow), through a network from node s to node t at minimum cost.
In this special case we can start with all flows equal to zero, and all
node prices equal to zero. On & "return’” arc (t, s) we set the lower
bound, £, equal to the upper bourd, u, equal to the desired flow value,
v. Then the arc (t, s8) is out of kilter since the initial flow, L =0,
is less than the required flow, lts = v. The cost, C g MY £ ritrarily
be set to -®, causing arc (t, 8) to be initially out of kilter in state
I, or . May be get to G, causing arc (t, 8) to be initially out of
kilter in state 1V.

We mention twe other important special cases of the general minimal
cost circulation problem, The first is determining maximum flow in a
capacitated network, and the second is finding the shortest route through
8 network In which costs on arcs are times or distances. While there
are specislized algorithms for each case, the Out-of-Kilter algorithm
handles either, and in the process indicates how to construct a moie
specialized algorithm.

In order to use the OKA to find the maximum level of flow in a

network from node s to node t, we take the following actions:

s

*
Ford and Fulkerson, p. 162,
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(1) add an arc connecting t to s.

(2) set ii = 0 for all i and i.

3
(3) set Cij = 0 for all 1 and j, except g
(4) set cts = -M where M is very large,
(5) set xij = 0 and o= 0 for all 1 and ji.
(6) set Uy ™ M where M is very large.

k-

On all arcs except (t, s), costs are zero, node prices are zerc, and
flow is feasible and zero. Arvrc (t, s) has a negatively large cost and
flow below its upper bound, and is therefore out of kilter, while all
other arcs are in kilter. By the labeling ~nles, all arcs other than
(t. 8) will stay in kiiter.

We first label node s, [t+, Uyg ™ xtsj, and search for nodes which
can be labeled from s. There are initialiyv several, since Csj = ( and
xsj < Usj on all arcs (s; j). We continue the labeling process until
thkare is a breakthrough. We then augment flow on the breakthrough path
by the OKA rules.

Since we assigned the capacity on the return arc (t, s) a very
large value, the arc will still be out of kiICer.** Therefore, repeat
the labeling process and further breakthroughs will continue to augmert
flow from s to t., Finally, there will be no path from s to t on which
every arc has flow less than capacity, At this point the algorithm will

fexk
consider all arcs connecting labeled fto unlabeled nodes, select the

minimum cost, CiS’ on these arcs, add this value to all node prices,

on the unlabeled“nodes, and attempt to lapel them, CGenerally, a label
would be assigned to at least the forward node of the arc on which the
minimum ¢ had been founi, for the new ¢ _  on that arc would be zero.

i} 15
In this case, however, flow equals capacitv on all arcs connect iny
, . ,
labeled and ur'abeled nodes. Consequently, even with the "repricing,’
no new labels will be assigned. The algorithm will once again consider

all arcs connecting labeled to uniabeled nodes, but there will be at

P
.

“I1f a solution is possible with pesitive flow (u, ™ 0 on some pathi,
there will be & breakthrough, since initiallv {low on dll arcs 1s zeroe.
k- . . . . . . t -
c < ), since o is negatively veryv large, and X < u,
ts ' ts ' ts ts
ko )
These arcs will now have x|, = u_ .,

1] i




least one less arc, since bv our repricing, at least one Eij now equals
zero. The UKA will thus continue to lock at arcs ccnnecting labeled to
unlabeled nodes which have Eij » 0, it will increase "1, ard continue to
remove arcs from further considevatlion. Eventually the only arc left
for consideration with a labeled and unlabeled node will be {t, s).*

At this point, " is 1ncreased by a sufficiently large number so that
- >k

€ T 0. Arc (s, t) is now in kilter, We therefore have maximum flow

through the network.

Notice that once flow augmentation stops, we reach a maximum £low,
The remainder of the p..cess simply computes the proper prices, We
could have terminated the algorithm as soon as there was no longer a
flow augmenting path from s to t,

The problem of finding the shortest route throcugh an uncapacitated
network is identical to that of finding the minimum cost path from s to

t through a network on which each arc has u = |, and on which a return

1]

arc (t, s) has « =0, u = 1, and ¢ = -M  wiere M is very large.
(¢, s) ts ots ' ts ’ : "
The OKA will send one unit of flow from § to t at minimum cost, Assume

¢,, > 0 for each arc, Start the problem witi x = 0 on all arcs, and

]
o= (0 at all nodes. Since Eij > 0 on all arcs except arc [, s), the

J

only out-of-kilter arc is (t, s). By the labeling rules, node s is
T

labeled "t+, €(s) ", where e(s) =

u - X =], he algorithm then
{s s
attempts to label rodes from s, but since PR it cannot, It there-

fore revises all — at all unlabeled nodes bv adding to thexr the minimum
)

¢, .. Cost on at least one acre (s, J) then becomes ¢ = 0, and on

i] 3
this arc flow {s less than capacity, The torward node, §, of this arc

-

receives the label s+, ¢( |V, where €(j) = min ¢(s), u , - Since

X ..

8} 5]
“53 is 1, €(j) = =(s), which was 1. This indicates that the second label
at all labeled nodes will be cne, and the problem 1s only one of oreaking

through on seme path:.  The algovithm continues forward from all labeled

nodes, finding all cH 0, and beting forced 1o i{ncrease by the ap-

propriate minimun Ci" This ther allows labeling one more are torward.
g
Fventually, node t is reached, and flow along the breakthrongh path is

*

It will be the last vne because ¢ = -M, (¢ = M), where M is
very large. nce, - -+ M. :
ery large Hence st s M ¢

Jk

This is the feasible but noncptimal condition described on page la.




increased by one unit. All arcs along the path are in kilfer since

Eij = 0 for each arc on the path, and xij = Uij' To find the shortest
route (or minimum cost path) we need only trace back through the network
from t to s, using the first component of the labels, The length ov

cost of this path {s given by ﬁt'




oy

i DCC''MENT CONTROL DATA
[ OMGINATING ACTVITY 23 REPORT SECURITY CLASSIFICATION
UNCLA TR ’
THE RAND CORPORATION 25 GROUP v

N

'3 REPORT TITLE
o ol -0l - ILTES ALGOPTTEM: 0 o E

4 AUTHOR(S) (Last nama, first nome, inificl)

i . booomd M. e nk
S REPORT DATE 60. TOTAL NO. OF PAGES 6b. NO. OF REFS
FEPEE I Py ) N -
A\ . —‘L
(7 CONTRACT or GRANT NO. 8. ORIGINATOR'S REPORT NO.
e e, m =i I
¢ AVAIL ABILITY7 LTMTTATION NOTICES T3 SPONSORING AGEN"Y
' ' 1 . y .
[
Rttt o - e ot
10 ABSTRACT 1l KEY WORDS
& ctescription of the operation and capa- Linear prosrumming
t..ity of Fulkerson's Uut-of-Kilter algo- Models
ratnr “A), an extremely efficient and dutremnalics
senera; method for solving minimum cost ietwcra thneory
riow roblems., The algorithm operates ULy Logistics
¢+ Uining conditions that must o satisfied Transportation
4 an optimal "circulation” in a network:
i v *hat satisfies capacity restric-
sn 831l arces and also satisfies i
tated "onservation of flow csonditions at '
1L nodes, when such an [ ptimal circula- ?
¢ .. ietermined, Ajl arcs are "in- i
siiter,’ AU scme peint in the opersation
Totne seseritnm, 17 such 8 circulation

cES Lot yel exist, then scme Arcs ar#
~riiter.” The UKA arbitra.iiv
sejects an cut-of-xilter arc and t:ties
rerarrange PLlovs Lo tring thet arc intoe
nouwt forcing any other arc
TurTior cubkeofeiilter, (f tne uteof-
r..oter arc can be brougrt .nto kilter,
tne saRcritam selects anciper out-of-
~..ter arc and repeats the (rocess.
.nie there are only & tUintte nualer of

arce, repetition of this process eventuai-
sy . wdis to oan optimal solution, if sny
1o annot e trought iniao ominter, the

Trolaom CcAannect be soiven,

r,u.
[




